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HEMING. Characteristics of the anion transport system in sea
turtle erythrocytes Am. J. Physiol. 261 (Regulatory Integrative
Comp. Physiol. 30): R1218-R1225, 1991.—Erythrocytes of
Kemp’s ridley sea turtle (Lepidochelys kempi) contain a 100-
to 105-kDa protein that is reactive with a monoclonal antibody
to the membrane domain of human erythrocyte band 3. Based
on inhibition of membrane HCO3-Cl™ exchange with 4-aceta-
mido-4’-isothiocyanostilbene-2,2’ -disulfonic acid (SITS), sea
turtle erythrocytes were found to contain 4 X 10° copies of
band 3 per cell. Umdirectional HCO3; transfer, specifically
HCO3 ,uin-Cl 1 ou. €xchange, where subscript in—out repre-
sents transfer from inside to outside and subscript out—in
represents transfer from outside to inside, was characterized by
a maximal exchange rate of 1.0-1.1 nmol-cm™2-s™!, substrate
affinity coefficients of 0.1-0.2 mM for HCO3; and 1.6 mM for
Cl, and an apparent inhibition constant for SITS of 0.6-1.0
uM (10°C, pH 7.6). Under physiological conditions (30°C, pH
7.4), the rate of net HCOj transfer (i.e., the difference between
HCO3 1 out-Cl outnin and HCOZ Luinin-Cl7in00) was 1,13 nmol.-

cm>.87' for cells subjected to a 5-mM decrement in CO,

content. This yields a rate coefficient for the “physiological”
anion shift in sea turtle blood of 1.7 s, indicating that the
anlon shift may require 2.6 s to reach 99% completion in vivo.
The erythrocyte anion shift appears to be a potential rate-
limiting step for capillary CO; exchange in these turtles.

band 3; anion exchange; erythrocyte; Lepidochelys; reptile

TRANSMEMBRANE HCOQOj3 flux plays an important role in
CO; transport and exchange and in regulation of intra-
cellular and extracellular pH. In erythrocytes, membrane
transport of HCO3 occurs primarily via Na-independent
HCO35-Cl™ exchange involving band 3 protein. This ex-
change has been well described 1n human erythrocytes
(15, 19, 33). Less information is available about HCOj3-
Cl™ exchange in the erythrocytes of other species. Eryth-
rocyte HCO3-Cl™ exchange nught be expected to vary
between species because of species differences in the
amount of band 3 protein in erythrocytes. For example,
agnathan (Entosphenus japonicus, Eptatretus stouti)
erythrocytes appear to have little or no band 3 protein
(8, 24}, whereas human erythrocytes have 7,000 copies/
um? of cell surface (19), llama (Lama glama) erythrocytes
have 23,000 copies/um* (18), and trout (Salmo irideus)
erythrocytes may have 30,000 copies/um? (25).

Sea turtles are among the largest and most active of
extant reptiles. Their corresponding requirements for
exchange of metabolic gases (O,, CO,) are high relative
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to those of most other reptiles. For this reason, sea turtles
might be expected to possess efficient mechanisms for
gas exchange, including erythrocyte HCO3-Cl™ exchange.
No data are available in the literature regarding the
kinetics of HCO5-Cl™ exchange in reptile erythrocytes.
Moreover, although band 3 protein has been found in
erythrocytes of a freshwater turtle (Pseudemys scripta)
(7), its presence in erythrocytes of other reptiles is un-
known.

In the present study, the anion transport system in
erythrocytes of Kemp’s ridley sea turtles (Lepidochelys
kempi) was characterized using electrophoretic, immu-
nological, and kinetic techniques. Kinetic studies were
conducted to determine the rates of both unidirectional
(fun:) and net (A,..) HCO; transfer across the erythrocvte
membrane. The physiological function of eryvthrocyte
anion exchange 1s net HCO; transfer (1.e., the difference
bEtWEBH Hcogeutqin'01_in—}eut B.Ild HCOS_inw—:-ﬂut'Cl_uut—rim
where subscript in—out represents transfer from inside
to outside and subscript out—in represents transfer from
outside to inside) 1 the presence of significant trans-
membrane gradients for HCO35;. The time course of this
“physiological” anion shift 1s protracted when compared
with the time course of anion exchange under steady-
state conditions (1.e., in the absence of transmembrane
anion gradients) because of the production/consumption
of intracellular HCO3 that continues as long as the anion
shift 1s incomplete (33). The rate coefficient of the anion
shift in sea turtles was calculated and compared with
information about the anion shift in other vertebrate
specles.

METHODS

Blood samples. Sea turtles utilized in the present study
were captive-reared at the National Marine Fisheries
Service, (Galveston Laboratory, Galveston, TX. Blood
was collected into heparinized syringes from the cervical
sinus of unanesthetized animals (1-2 yr of age), as de-
scribed previously (26). The blood samples were held
overnight at 4°C before use in experiments.

Determination of 8. 0u; was measured using the
method of Lambert and Lowe (22) with minor modifi-
cations. In this technique, the time course of extracellular
pH (pH,) is followed when a HCO53-free Cl™-rich eryth-
rocyte pellet 18 mixed with a HCOj3 -rich Cl™-free medium
of similar pH, (see below for media composition). In the
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presence of extracellular carbonic anhydrase (CA) activ-
ity, transmembrane HCO35-Cl™ exchange is rate limiting
for the consequent change in pH,, as ClI~ and HCO3 re-
equilibrate across the erythrocyte membrane. The initial
rate of change in pH, (dpH,/dt) reflects the initial rate
of anion exchange. Anion exchange under these condi-
tions is unidirectional in the sense that, theoretically,
Cl™ i1s the only exchangeable intracellular anion, and
HCOj; is the only exchangeable extracellular anion. Con-
sequently, the expected operational mode of the exchan-
ger 18 solely HCO3 ouimin-Cl in—out.

f.m experiments were conducted as follows. Erythro-
cytes were isolated by centrifugation and were washed
three to four times in 4-5 vol of an 1sotonic solution
containing (in mM; pH 7.6) 155 Na(l, 6 KCl, 5 D-glucose,
1.5 CaCl,, and 1 N-2-hydroxyethylpiperazine-N"-2-eth-
anesulfonic acid (HEPES; nominally CO,-HCO3 free).
The final cell pellet contained 5% trapped extracellular
solution and was thermostated at 10°C. 6,,; was moni-
tored by continuously measuring pH, when 250 ul of the
cell pellet were injected into 15 ml of test medium (see
below) in a stirred thermostated (10°C) pH system (pH
meter model PHM84, Radiometer). The test medium
contained (in mM; pH 7.6) 320 sucrose, 5 HEPES, 1.5
Ca-gluconate or CaCl,, 0-2 NaHCO;, 0.005 bovine CA
(380-520 Wilbur-Anderson U/ml)}, and 0-0.1 SITS. Note
that the cells were not pre-incubated with SITS in an
attempt to examine SITS inhibition of #,,; under pre-
dominately reversible conditions. All chemicals were
from Sigma Chemical (St. Louis, MO).

The initial dpH,/d¢ was determined from the initial
linear portion of the pH, time course (<2 s after pellet
injection into the test medium). The response half-time
of the electrode system in these studies was 850 ms, as
measured for a step change from pH 4 to 8. Measure-
ments of dpH,/dt were corrected for the system half-
time, assuming the observed reaction was first order (i.e.,
the observed reaction half-time equaled the sum of the
true reaction half-time and the measurement system
half-time).

Determination of Ope. 0« was measured using a
stopped-flow method (12). In this technique, the time
course of pH, 1s followed when a HCOj3 -rich erythrocyte
suspension was mixed with an acidic buffer (both media
containing Cl~, see below for compositions) in a stopped-
flow apparatus. In the presence of extracellular CA ac-
tivity, HCO3-Cl™ exchange 1s rate limiting for transmem-
brane H" equilibration, and the dpH,/d¢ immediately
after flow stops reflects the initial rate of anion exchange.
Four operational modes of the exchanger are possible
under these conditions (1.e., Cl™-Cl-, HCO3z-HCOs3,
Hcoginqﬂut'ClH(}utﬁin: &ﬂd Hcognut—}in'C]-“in—mut)- The
monitored reaction represents a net HCOjy transfer, spe-
cifically the difference between the rates of HCO3 1 _.out-
Cl ounin €xchange and HCO3  yt—in-Cl in—ou €xchange.

Red blood cells for 6, experiments were prepared as
follows. Erythrocytes were isolated by centrifugation,
washed three to four times in 4-5 vol of an isotonic
solution [(in mM) 155 NaCl, 6 KCIl, 5 D-glucose, 1.5
CaCl, and 1 HEPES; pH 7.6], and finally suspended at
10% hematocrit in the same solution. NaHCO; and bo-
vine CA were added to vield concentrations of 10 mM
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and 800 Wilbur-Anderson U/ml, respectively. The cell
suspension was titrated under strict anaerobic conditions
to an equilibrium pH, of 7.4 at 30°C (pH of cervical sinus
blood at the measured turtle cloacal temperature) or to
pH, 7.6 at 10°C. SITS (0-100 uM) was added to aliquots
of the suspension, and the aliquots were incubated for at
least 30 min at the appropriate experimental temperature
before studies were conducted. Consequently, studies of
SITS inhibition of #,.. were conducted under predomi-
nately irreversible conditions (13).

8... was monitored by continuously measuring pH,
when equal volumes of a red blood cell suspension and
an acidic buffer [(in mM) 157.5 NaCl, 6 KCl, 1.5 CaCl,,
and 11 HEPES; pH 6.7] were mixed in a thermostated
(10 or 30°C) stopped-flow apparatus. This apparatus has
been described in detail previously (12). The initial dpH,/
dt was determined from the first 500 ms (after flow
stopped) of the pH, time course. The response time of
the electrode system in these studies, estimated using a
ramp change in pH, was <5 ms and was ignored In
subsequent data analyses.

Computations of HCO3 transfer. The initial transfer
rate of acid-base equivalents across the red blood cell
membrane per unit of cell surface area (§H™} was calcu-
lated as

(dpH,/dt)3,(1 — Hct)
B Het(A/V)

where 3, is the extracellular non-HCOQO3 buffer capacity
at the initial pH, (medium pH before pellet injection 1n
B, studies and pH, under constant flow conditions in
f... studies), Het 1s mixture hematocrit, V is cell volume
(391 um?®), and A is cell surface area (457 um?). V and A
were calculated from direct measurements of air-dried
erythrocyte diameters (18.00 X 10.75 um) using the equa-
tions of Westerman et al. (29) and assuming 1) a 10%
shrinkage of cells during air drying (9) and 2) a cell
thickness of 2.2 um (34)

V = 0.712 d*T
2wab (sinh™'¢)

€

oH™ (1)

(2)
(3)

A = 27a® 4

where d is equivalent cell diameter, 7" is cell thickness, a
1s 0.5d, b is 0.67T, and

e = vVat — b¥/a (4)

Neglecting OH™ flux under the conditions of our exper-
iments, AH™ equals the rate of HCOz-CI™ exchange (6,n;,

6’ruEtt)-
As appropriate, f.,; data were numerically fit to the

Michaelis equation for an enzyme-catalyzed reaction
Huni = ([Hcog]uvmax)/(Kl/Z + [HCO?_]D) (5)

and to the Michaelis equation for noncompetitive inhi-
bition

f?uni

[HCO3 ], Vinax
~ Ki5(1+ [SITS]/K;) + [HCO31,(1 + [SITS]/K;)

and were analyzed using Hanes-Woolf ([HCO3],/6uni vs.
[HCO3],) plots, where [HCO3], is extracellular HCOj3

(6)
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(Galveston, TX).

mouse 1imimunog

RESULTS

blot. Sea turtle erythrocytes conta

Electrophoretic and tmmunological characteristics. A

SDS-PAGE of the erythrocyte proteins of Kemp’s ridley
sea turtle is shown in Fig. 1 together with the correspond-

Ing 1mmuno

*

ty of the secondary antibody with erythro-
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pH, (<2 s after mixing) were abolished by inhibition of 0.019-0.063, P < 0.05). These analyses provided still

band 3-mediated anion exchange with 100 uM SIT'S (Fig.

t
was used to calculate 6,,; (see above). Changes
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\Are s G.1 mM SITS
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FIG. 2. Representative traces of extracellular pH (pH,) in presence
and absence of 100 uM SITS. A: pH, time course after mixing Cl -rich
nominally HCOj3-free pellet of erythrocytes with Cl™-free HCQj3-rich
medium at 10°C. Changes in pH, reflect re-equilibration of HCO;3
across erythrocyte membrane. Initial rate of change in pH, {(dpH,/dt)
was used to calculate rate of unidirectional transfer across erythrocyte
membrane (#,:}. B: pH, time course after mixing HCOj3 -rich suspension
of erythrocytes (pH 7.4) with acidic buffer solution (pH 6.7} in stopped-
flow apparatus at 30°C. Changes in pH, after flow stopped reflect re-
equilibration of H™ across erythrocyte membrane via Jacobs-Stewart
cycle. dpH,/dt immediately after flow stopped was used to calculate
rate of net transfer across erythrocyte membrane (8,..).

of 1.0 nmol.ecm™.s7}, and K for SITS of 0.6-1.0 uM.

At each [HCO3],, fun was significantly reduced by 3
mM of extracellular ClI™ (Fig. 34). Hanes-Woolf plots of
funi at each extracellular C1™ concentration ([Cl7],) vs.
[HCO3], are given in Fig. 4B. The plots intersect below
the x-axis and to the left of the y-axis, indicating mixed
competitive-noncompetitive inhibition. Assuming Cl~
behaved as a simple linear mixed-type inhibitor, we
plotted K., app/ Vinaz app (v-intercept of Hanes-Woolf plot,
where K., .5, 18 the apparent Michaelis constant in the
presence of Cl7) vs. the nominal [Cl7}, (plot not shown).
The analysis yielded a K, (negative x-intercept) or, more
appropriately, a K., for C1™ of 1.6 mM. It is worth noting
that this value provides only an approximation of the
true K., for Cl™ because of uncertainty about the actual
|Cl7]..

An Easson-Steadman plot for 6., is given in Fig. 5.

i 0 SITS
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FIG. 3. Rate of unidirectional HCO: u in-Cl nowe €Xchange (0,),
where subseript in—out represents transfer from inside to outside and
subscript out—in represents transfer from outside from inside, in sea
turtle erythrocytes at 10°C (mean = SE). A: effect of extracellular
HCO3 concentration (JHCO:],) in presence and absence of extracel-
lular C1". Lines are numerical fits of data to Michaelis equation (x* =
0.082--0.213) and yield substrate affinity constant (K.,) for HCO; (0
mM extracellular C17) of 0.1 mM and maximal exchange rate (V) of
1.0 nmol.cm™.57!, B: effect of SITS at various [HCO:z], (0 mM
extracellular C17). Lines are numerical fits of data to Michaelis equation
for noncompetitive inhibition (x* = 0.019-0.063) and yield K., for
HCO3 of 0.1 mM, a Vaux of 1.0 nmol-cm™.s™", and an inhibitory
constant for SI'T'S of 0.6-1.0 uM. [SITS], SITS concentration.

The reciprocal of the slope of this plot vielded a dissocia-
tion constant (Kj4) for the “SITS binding site” reaction
of 0.6 uM. The y-intercept (which equals the negative
quotient of the total concentration of SITS binding sites
and Kj3) can be used to provide an indirect determination
of the number of binding sites per unit of cell membrane

“surface area (see Ref. 13). In this way, sea turtle eryth-

rocytes were calculated to contain 8,000 SITS binding
sites/um?®, presumably indicating an equal density of
band 3 protein. |

Net HCO5 transfer. Figure 2B gives a representative
trace of the change in pH, when a HCOj3 -rich suspension
of turtle erythrocytes (30°C, pH, 7.4) was mixed with an
acidic buffer (pH, 6.7) in a stopped-flow apparatus. After
flow stopped, mixture pH, increased rapidly as trans-
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FIG. 5. Easson-Steadman plot of fractional inhibition of 8, (I) and
SITS concentration ([SITS]}. Line is least-squares regression fit of
data (r = 0.988) and yields dissociation constant for SITS binding site
reaction of 0.6 uM and density of SITS binding sites of 8,000/um? of
ervthrocyte membrane.

membrane H” equilibration was reached via the Jacobs-
Stewart cycle. The initial dpH./dt immediately after
stopping flow was used to calculate 6, (see above). The
alkalinization reaction was abolished by inhibition of
band 3-mediated anion exchange with 100 uM SIT'S (Fig.
2B).

fnet averaged 0.43 + 0.03 (SE) nmol.-cm™2.s! under
conditions comparable to those of the unidirectional
transter studies (10°C, pH, 7.6). When determined under
physiological conditions (30°C, pH, 7.4), .. averaged
1.13 £ 0.11 nmol.-em™2-s'. SITS inhibited 4,., with an
ICs of 0.8 uM at 30°C (Fig. 6).

DISCUSSION

Erythrocytes of Kemp’s ridley sea turtles contain a
100- to 105-kDa band 3 protein (Fig. 1). The apparent
molecular weight of sea turtle erythrocyte band 3 is
intermediate between that of mammalian erythrocytes
(88-98 kDa; Refs. 18, 19, 33) and fish erythrocytes (116
kDa; Ref. 23). Sea turtle band 3 migrated on SDS gels
as a single diffuse band like human erythrocyte band 3
(17) and unlike chicken erythrocyte band 3 protein,
which migrates as 2 bands (14).

HCO;-CI" EXCHANGE IN TURTLE ERYTHROCYTES

B O mM CI

FIG. 4. Hanes-Woolf plots of 0.,; and THCO3)..
A: effect of SITS (0 mM extracellular C17). Lines
are least-squares regression fits of data (r = 0.969-
(.999} and vield K\, for HCO3 of 0.1-0.2 mM and
Vaux (0 mM SITS) of 1.1 nmol.¢em™2.57%, B: effect
of extracellular C1™ {0 mM SITS). Lines are least-
squares regression fits of data (r = 0.984-0.996).
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FIG. 6. Effect of SITS on rate of net HCO; transfer (4,...) in sea
turtle erythrocytes at 30°C expressed as means = SE. Line is numerical

f1t of data to sigmoid power curve and yields median inhibitory concen-
tration of 0.8 oM.

Easson-Steadman plots (Fig. 5) can be used to provide
an indirect determination of the concentration of SITS
binding sites (see Ref. 13). Assuming a one-tc-one bind-
ing of SI'T'S to band 3 (4), sea turtle erythrocytes appear
to contain ~8,000 band 3 copies/um?® of cell surface. It
should be pointed out that this calculation is highly
dependent on erythrocyte surface area and volume, val-
ues that were also indirectly determined in the present
study. The present data suggest that the density of band
J 1n sea turtle erythrocytes is similar to that in human
erythrocytes (7,000 copies/um? Ref. 19). In contrast, the
erythrocytes of llamas contain 23,000 copies/um® (18),
and trout contain 30,000 copies/um?® (25). When com-
pared on a copies-per-cell basis to account for the vastly
different sizes of the erythrocytes of these species, sea
turtles are found to contain 4 X 10° copies/cell (A = 457
um®), trout to contain 8 X 10° copies/cell (A = 260 um?
Ref. 25), and humans and llamas to contain 1 x 10°
copies/cell (A = 142 and 43 um®, respectively; Refs. 18,
19). Thus, there is no obvious correlation between the
prevalence of band 3 protein (expressed either as copies/
pwm® or copies/cell) and erythrocyte size or shape (ellip-
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tical disks in turtles, trout, and llamas vs. biconcave
disks in humans).

T'he maximum rate of unidirectional anion exchange
( Vinax Of #,;) determined using the technique of Lambert
and Lowe (22) should theoretically approach the total
anion transport capacity of erythrocytes (33). The total
anion transport capacity of human erythrocytes is 40-50
nmol-cm™.s7! at 38°C and decreases to 1-2 nmol. crm—2.
s~ at 10°C (1, 2, 31-33). Thus, at the same temperature
(10°C), the total transport capacity of sea turtle eryth-
rocytes (1.0-1.1 nmol-cm™.57") is similar to that of
human erythrocytes. Given that sea turtle and human
erythrocytes contain similar densities of band 3 protein
(8,000 vs. 7,000 copies/um?, respectively), these data
suggest that the anion transport systems 1n sea turtle
and human erythrocytes have similar turnover numbers
at 10°C. Sea turtle erythrocytes differ from trout eryth-
rocytes 1n this regard. Romano and Passow (25) reported
that trout and human erythrocytes have similar rates of
equilitbrium CI™ exchange at 10-15°C, despite finding
that the density of band 3 (copies/um?) in trout eryth-
rocytes was 4.3 times that of human erythrocytes. This
indicates that, at 10-15°C, the turnover number of the
anion transport system of trout erythrocytes is substan-
tially less than that of the human system.

The anion transport systems of sea turtle and human
erythrocytes have similar substrate affinities. Compa-
rable data are not available for the erythrocytes of other
species. The K., values for HCO3 (0.1-0.2 mM) and Cl1-
(1.6 mM) of sea turtle erythrocytes at 10°C are in general
agreement with, albeit approximately one-half of, those
determined by Lambert and Lowe (22) for human eryth-
racytes at the same temperature in the presence of sim-
llar transmembrane anion gradients (K., for HCO; of
0.3-0.7 mM and K., for CI~ of 4 mM). The anion trans-
port system of human erythrocytes has a higher affinity
for HCO3 than for CI- (19). Lambert and Lowe (22)
reported a 10-fold difference between the K., for HCO;
vs. Cl” of human erythrocytes. Qur data indicate a similar
difference exists between the K, for HCO3 vs. CI™ (8- to
16-fold) in sea turtle erythrocytes. The K., values of
human erythrocytes are temperature dependent, increas-
ing with increments in temperature (1, 10). Conse-
quently, the K., values obtained for sea turtle erythro-
cytes at 10°C probably underestimate the substrate affin-
ity coefficients at physiological temperatures.

The K, values of sea turtle erythrocytes determined
in the presence of transmembrane anion gradients are
more than an order of magnitude lower than the sub-
strate dissociation constants (K.} reported for human
erythrocytes under steady-state conditions (K, for
HCOj3 of 16 mM and K, for Cl~ of 65-67 mM; Ref. 19).
Differences between determinations of K., ohtained in
the presence of transmembrane anion gradients and K,
obtained under steady-state conditions can he explained
by asymmetry in the band 3 anion exchanger. The anion
transport system of erythrocytes displays both extrinsic
and intrinsic asymmetry (11, 15, 19). Extrinsic asym-
metry is consistent with the Ping-Pong model of anion
exchange, as a consequence of transmembrane Cl™ gra-
dients. According to the Ping-Pong model, binding,
transport, and dissociation of an anion in one direction
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obligatorily precedes binding, transport, and dissociation
of an anion moving in the opposite direction. In the
presence of a transmembrane Cl™ gradient, the number
of Inward-facing and outward-facing transport sites dif-
fer, with more sites facing the compartment with the
lowest [CI7] (i.e., the intracellular compartment under
physiological conditions). There is additional evidence
that the anion transport system of erythrocytes displays
Intrinsic asymmetry: more transport sites appear to face
the intracellular compartment, even in the absence of
transmembrane Cl™ gradients (20).

In the present unidirectional transfer studies, the pre-
dicted intracellular [C17] of sea turtle erythrocytes before
cell injection into the test medium was 70-75 mM, given
the measured Donnan H™ ratio of 0.60. Thus, before sea
turtle erythrocytes were injected into the test medium,
the majority of anion transport sites presumably were
facing inward. On mixing with the CI"-free medium, the
transmembrane Cl~ gradient was reversed, and chloride
10ns were translocated from inside to outside the cells.
Bicarbonate ions then bound to the now outward-facing
sites and were translocated inside the cell. The cycle
repeated until HCO3 and Cl~ re-equilibrated across the
cell membrane. It follows that, under the present exper-
1mental conditions, K., values primarily reflected inward-
directed anion transfer and were determined primarily
by the substrate affinity of the outward-facing site
(Kimow) and the rate constant for anjon translocation
across the cell membrane from outside to inside (Rout_,
in). In contrast, K, determinations under steady-state
conditions are a function of the binding affinity for
substrate to both inward- and outward-facing sites (K., ;.
and Ky, o, respectively) and the rate constants for anion
translocation across the cell membrane in both directions
(Rinsour 8Nd kou_in). Previous investigators (11) have
shown that the K, for inward-directed transfer 1s 15-fold
less than the K., for outward-directed transfer. It is
unclear whether this asymmetry arises from differences
between K., vs. K, o, differences between k... vs.
Rout—in, OT a combination of the two (15).

HCO3-Cl™ exchange in sea turtle erythrocytes was
inhibited by SITS in a dose-dependent manner (for 4,
ICs0 of 0.6-1.1 uM, K; of 0.6-1.0 uM, and K, of 0.6 uM:
for fne.: ICs of 0.8 uM). Cabantchik and Rothstein (4)
reported a K; of SITS for anion exchange in human
erythrocytes of 10 uM. Sea turtle erythrocytes, therefore,
appear to have a higher affinity for SITS than do human
erythrocytes. SITS exhibited apparent noncompetitive
behavior toward é,.. under the present experimental con-
ditions. Binding of stilbene disulfonates to human eryth-
rocyte band 3 involves two distinet phases, an initial
reversible phase followed by irreversible binding (13). It
1s generally held that, under reversible conditions, stil-
benes are competitive inhibitors of anion exchange, at
least in human erythrocytes (15, 19, 33). However, once
irreversibly bound, stilbenes can be expected to exhibit
apparent noncompetitive behavior. Although the rate
constants for covalent binding of SITS are not known,
Janas et al. (13) gives the rate coefficient for covalent
binding of 4,4’ -diisothiocyanostilbene-2,2’ -disulfonic
acid (DIDS) to human erythrocyte band 3 as .03 min™!
at 10°C (experimental temperature of present ., stud-
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ies), yielding a half-time for covalent DIDS binding of
23 min. Assuming similar behavior by SITS, one would
expect very little irreversible binding of SITS to sea
turtle band 3 during the <2-s period considered in our
determinations of 8,,;. Nonetheless, there are two plau-
sible interpretations of our SITS data. First, SI'TS may
indeed be a noncompetitive inhibitor of the anion trans-
port system in sea turtle erythrocytes. Differences be-
tween human and sea turtle cells in this regard could be
a species effect. A second possibility is that the rate
coefficient for covalent binding of stilbenes to sea turtle
band 3 may be markedly less than that for covalent
binding to human band 3. If this is the case, the observed
kinetics of SITS inhibition could reflect irreversible
binding to sea turtle band 3.

Extracellular chloride behaved as a mixed competitive-
noncompetitive inhibitor of 8,.,; in sea turtle erythrocytes.
This suggests that the anion transport system of sea
turtle erythrocytes contains an external modifier site
capable of substrate inhibition, similar to that docu-
mented for the anion transport system of human eryth-
rocytes {15, 19, 33).

Physiological implications. Erythrocyte anion transfer
is a potential rate-limiting step for capillary CO, ex-
change. The time course of anion transfer under phys-
iological conditions is longer than that of equilibrium
anion exchange under steady-state conditions because of
the production/consumption of intracellular HCO3 (33).
As defined by Wieth and Brahm (33), the rate coetticient
of the physiological anion shift (k) is the quotient of
the maximum net transport of HCOj3 (equivalent to our
f...) and the total amount of HCO3 exchanged across the
cell per unit of cell surface area. Table 1 compares this
information for sea turtle and human blood. There 1s
considerable difference between the k., of sea turtle and
human blood. This difference is due in part to the smaller
erythrocyte surface area per unit of blood volume in sea
turtles (i.e., product of hematocrit and membrane surface
area/unit cell vol). Also, differences in body temperature
probably influence k., because the half-time of eryth-
rocyte anion exchange increases with decrements in tem-
perature (1, 6, 25, 33). From the k. values given in Table
1, one calculates that sea turtle blood requires 0.4 s for
50% completion of the physiological anion shift after a
change in CO, content and 2.6 s for 99% completion.
Similar data are not available for other poikilotherms.
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For trout erythrocytes, however, Romano and Passow
(25) reported half-times for equilibrium C1~ exchange of
0.8-1.3 s at 10-15°C. Such values must be regarded as
minimum estimates of the half-time of the physiological
anion shift for reasons outlined by Wieth and Brahm
(33). The half-times for equilibrium Cl~ exchange In
trout erythrocytes are two- to threefold larger than the
present estimate of the half-time of the physiological
anion shift in sea turtle blood. This suggests that the
physiological anion shift in trout blood at 10-15°C may
require >5-8 s to achieve 99% completion after a change
in CO» content.

Capillary transit time ultimately determines whether
capillary CO, exchange is rate limited by erythrocyte
anion transfer. Erythrocyte anion transfer can be ex-
pected to rate limit capillary CO, exchange whenever the
99% completion time of the physiological anion shift
exceeds the capillary transit time. For example, the anion
shift in human blood reaches =99% completion during
pulmonary capillary transit at rest (transit time 750 ms)
but =90% completion during pulmonary capillary transit
during exercise (transit time 300 ms) (33). In turtles,
normal capillary transit times are difficult to assess
because of the cyclic nature of their cardiac output and
because of the extent of intracardiac shunting of blood
in relation to lung ventilation, Turtles are intermittent
breathers and possess a three-chambered heart. During
lung ventilation, cardiac output increases rapidly (as
much as 2-fold), and the majority of blood flow is directed
to the lungs. Conversely, during apnea, cardiac output
falls gradually, and the majority of blood flow is directed
to the systemic circulation. Cardiac output also varies
markedly as a function of body temperature. In Pseude-
mys scripta, for example, cardiac output increases from
8.5ml-kg'.min~'at 10°C to 84.5 ml - kg™"-min~' at 30°C
(30). Capillary transit times in the pulmonary and sys-
temic circuits are expected to vary in parallel with these
changes in blood flow.

In addition to rate-limiting capillary CO. exchange,
noncompletion of the erythrocyte anion shift during
capillary transit will result in significant CO,-HCO3-H"
disequilibria in postcapillary blood (5). The presence ot
such disequilibria in vivo could explain differences ob-
served between alveolar gas Pco; and left pulmonary

TABLE 1. Rates of physiological anion shift after step changes in blood CO; content

Completion Time, s

Temp, Hct, Membrane SA, ACCO,, Miotar a5 Revss
“C % um?/1 cells nmol/1 blood nmol/cm® nmol/ecm?* s s~ £09 90 999,
Human
38 40 1,575 1.9 0.15 0.9 6 (.12 0.38 (0.76
38 40 1,575 b 0.43 3.1 6.5 0.11 0.35 0.70
37 4() 1,575 2.5 0.20 1.33 6.7 (.10 (.34 0.68
Sea turtle
30 30 1,169 5 (.08 1.13 1.7 0.41 1.3 2.6

Temp, temperature; Het, hematocrit; SA, surface area; ACCO,, step change in blood CO, content; Mo, total amount of HCO3 exchanged/
SA: 8, rate of net HCO; transfer; k..., rate coefficient of anion shift. All data for 38°C groups are from Wieth and Brahm (33). Data for 37°C
are calculated from data of Crandall et al. (6) with Het and SA given by Wieth and Brahm (33). Data for 30°C are calculated from present

results with Het given by Stabenau et al. (26).
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venous PCO; in turtles. The equilibrated Pco, of blood
leaving turtle lungs (Paco,) has been reported to exceed
the alveolar Pco; (PAco,) (3). This disparity is consistent
with a postcapillary continuance of the erythrocyte anion
shift. Persistence of the erythrocyte anion shift in the
postcapillary vasculature is expected to cause a postcap-
illary rise in blood Pco; and pH (5). Under such circum-
stances, the gas tensions and pH values of equilibrated
postcapillary blood samples (i.e., Paco,, Pao,, and pH.,)
do not reflect the true gas tensions and pH of end-
capillary blood (i.e., Pcco,, Pco,, and pH,), specifically
Paco, > Pcco, ® PAco,, and pH, > pH.. The possible
existence of postcapillary CO,-HCO3-H™ disequilibria in
sea turtle blood in vivo warrants further investigation.
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